In the reaction.

$$NH_3 + H_2O \leftrightarrow NH_4^+ + OH^-$$

A conjugate acid-base pair is

- A) H2O and OH-
- B) H₂O and NH₄⁺
- C) NH3 and H2O
- D) NH3 and OH-

Which is the conjugate acid of HSO₄-?

- A) H₃O⁺
- B) HSO3-
- C) SO₄²~
- D) H₂SO₄
- 3. What are the bases that accept protons in the reaction?

$$H_2S + H_2O \leftrightarrow H_3O^+ + HS^-$$

- A) HS⁻ and H₃O⁺
- B) H2S and H3O+
- C) HS⁻ and H₂O
- D) H₂S and H₂O

4. In the reaction:

Which is a conjugate acid-base pair?

- A) HBr and H2O
- B) H₃O⁺ and HBr
- C) H₃O⁺ and Br⁻
- D) HBr and Br

5. Given the reaction:

CH₃COOH(aq) + H₂O(
$$\ell$$
) \leftrightarrow
CH₃COO⁻(aq) + H₃O⁺ (aq)

In this reaction, which substances are accepting protons?

- A) H₂O(ℓ) and H₃O⁺(ag)
- B) $H_2O(\ell)$ and $CH_3COO^{-}(aq)$
- C) CH3COOH(ag) and CH3COO-(ag)
- D) CH₃COOH(ag) and H₂O(ℓ)

6. In the reaction:

Which pair represents an acid and its conjugate base?

- A) H₂O and H₂PO₄
- B) H₃PO₄ and OH-
- C) H₂O and H₃PO₄
- D) H₃PO₄ and H₂PO₄-
- Given the reaction at equilibrium:

What are the two species that are acids?

- A) NH₃ and SO₄²-
- B) NH3 and NH4+
- C) HSO₄⁻ and SO₄²- D) HSO₄⁻ and NH₄⁺
- 8. In the reaction:

$$H_2O + H_2O \leftrightarrow H_3O^+ + OH^-$$

The water is

- A) a proton donor, only
- B) a proton acceptor, only
- both a proton donor and a proton acceptor
- D) neither a proton donor nor a proton acceptor
- 9. The compound HNO3 can be described as an
 - A) Arrhenius base and a nonelectrolyte
 - B) Arrhenius acid and a nonelectrolyte
 - C) Arrhenius acid and an electrolyte
 - D) Arrhenius base and an electrolyte
- 10. Which compound releases hydroxide ions in an aqueous solution?
 - A) KOH
- B) CH₃OH
- C) HCl
- D) CH₃COOH

17)
$$H_2SO_4 + Ca(OH)_2 = CaSO_4 + 2H_2O$$

19)
$$H_2O$$
 + HI \rightarrow H_3O^+ + I^-

20)
$$CH_3COOH + H_2O \rightarrow CH_3COO^- + H_3O^+$$

22)
$$H_2SO_4 + OH^- \rightarrow HSO_4^- + H_2O$$

23)
$$HSO_4^- + H_2O \rightarrow SO_4^{-2} + H_3O^+$$